

Complex linkages between hydrologic dynamics & biogeochemical processes in the near-stream zone – new ways forward

¹ **HELMHOLTZ** | CENTRE FOR | ENVIRONMENTAL | RESEARCH - UFZ

Outline

- Introduction: Why care about GW-SW interactions ?
- Characteristics of the GW-SW interface
- Case studies of three stream-aquifer systems
 - 1st order stream in a riparian wetland (Lehstenbach, South-East Germany)
 - monsoonal stream-aquifer dynamics (Haean Catchment, South Korea)
 - hyporheic dynamics (Selke River, North-East Germany)
- Conclusions
- Outlook challenges and ways forward

Introduction

Background

- EU WFD mandates "good status" of GW and SW
- Management \rightarrow fate of critical substances in aquatic systems
- Importance of GW-SW exchange for ecological functions
- Need to evalute water & solute fluxes between GW and SW

Hypotheses

- GW-SW interface as a reactive zone for solute transformations
- Hydrologic dynamics \rightarrow biogeochemical space-time patterns
- Patterns affect solute export to rivers and streams

The GW-SW interface

nutrient transformations

Typically steep hydraulic, biogeochemical and thermal gradients Spatial and temporal variability of fluxes \rightarrow hot spots, hot moments Mediates water and solute fluxes between GW and SW \emptyset HELMHO

HELMHOLTZ | CENTRE FOR | ENVIRONMENTAL | RESEARCH – UFZ

Hydrology ← → biogeochemistry

from: Stonedahl et al. 2010, WRR, 46:W12539

Lehstenbach – simulation of exchange dynamics

21m

numerical code HydroGeoSphere

Non-linear, hysteretic discharge behavior

ENVIRONMENTAL RESEARCH – UFZ

Non-linear, hysteretic solute dynamics

three rain events in the summer of 2010

dynamics in riparian wetland control DOC Export from catchment !

Simulated biogeochem. patterns - particle tracking + PHREEQC

Observed vs. simulated concentration profiles

Haean catchment, South Korea

Monsoon events → scour in the channel

before July 2010 event (P = 15 mm in 70 min)

original mesh	

after July 2010 event

Page 15

Monsoon events → shifts between losing & gaining

Page 16

Simulated vs. observed heads

Simulated vs. observed temperatures at W8

gaining conditions

Hyporheic zone dynamics – Selke River, NE Germany

Field monitoring & field laboratory

WESS / TERENO

high-resolution online oxygen profiling

EC dynamics across gravel bar – first results

RTDs by non-parametric deconvolution of EC time series (Cirpka et al. GW 2007, Vogt et al. AWR 2010)

Explorative modeling – flow, transport & reactions

Page 23

Pressure distribution at the interface

- CFD-generated pressure distribution as BC for HZ model 🌾 несмности
- variations in channel structures + inflow of ambient GW

Modelling scenarios

tracer movement for different rates of GW upwelling

- shifting pressure minima & maxima for different bed forms 🌾 несмности
- GW inflow reduces extent of HZ

CENTRE FOR ENVIRONMENTAL **RESEARCH – UFZ**

Conclusions

- Complex dynamics of water & solute fluxes at GW-SW interface
- Hydrology as major control for biogeochemical process patterns
- Solute fluxes driven by event-based dynamics (e.g. thresholds)
- Specific times & locations may dominate solute flux response
- Solute fluxes not described well by average states & conditions
- Interface processes may drive solute dynamics at larger-scale
- High-frequency monitoring may reveal non-intuitive dynamics
- Explorative modeling helps to avoid pitfalls in data interpretation

Outlook – challenges & ways forward

Challenges

- Knowing what to measure & monitor where & when
- How to identify dominant processes
- Model, parameter & predictive uncertainties
- How to assess process relevance at management scales

Ways forward

- Creatively utilize potential of new field technologies & methods
- Hypothesis-driven explorative research designs
- Combine "top-down" with traditional "bottom-up" approaches
- Iterative combination of monitoring & modeling → conceptual models of solute fluxes, classification schemes for GW-SW system types → WQ management strategies

Acknowledgements: Michael Vieweg, Nico Trauth, UFZ Leipzig Klaus-Holger Knorr, Martin Reichert, Chris Shope University of Bayreuth

V ydrogeology UFZ Leipzig

Thank you for your attention