

Environmental and Climatic Controls over CO₂ efflux and DOC Leaching in a 1-year Soil Incubation Experiment

Mohammad Moonis and Ji-Hyung Park

Contact: moonis.mohammad@qmail.com, jhp@ewha.ac.kr

To investigate chemical controls in the form of:

- nitrogen addition and
- (ii) liming
- Under differential responses of CO2 efflux and DOC export (iii) under elevated temperature in one year soil incubation experiment

depending on acidic condition

Materials and Methods

Sampling Site and Method Sampling Method Lab analysis: Soil layers were arranged in cylindrical PVC columns CO2 efflux measurement: carried out Haean Basin, Yanggu (South Korea): Forest site: mixed deciduous forest, ~30 yr old Soil type: Cambisol (FAO Classification) – Dry to slightly moist with using LICOR LI-820 Infra-red CO2 •Korean soils have been given two temperature treatment : Normal and elevated (+5 C) while Germans soils have been kept at normal temperature; - DOC analysis: conducted with leachates of column filtered through a GF/F filter using TOC-5000A Analyzer (FBC) mille Generation Sector 1 year Simulated Rainfall: 507.4 mL to each column in every 14 days (equivalent to annual average rainfall; Leachates were collected after every event for analysis Nitrogen Fertilization: Applied in form the of NHANHO3, 3.74 mg equivalent to brown soil • Steigerwald Nature Park, Bavaria (Germany): •Forest site: more than 100 yr old •Major species: European Beach and Sessile Oak (Shimadzu, Japan) absorbance: carried out with leachates collected from biweekly leaching event using Biochrome UV analyzer **.** UV 40 kg/ha /yr N-deposition after every rainfall simulation ·Soil type: Dystric Cambisol (FAO Classification) - Sandy to loamy Liming: applied 500 mg in form of CaCO3 25 cm X 25 cm plot were laid down to collect the soil samples – organic layer, L1 Layer: 0-10 cm. L2 Layer: 10-20 cm;

Results and Discussion

Discussion

-CO2 efflux increased briefly, but thereafter decreased gradually. In case of Haean soil, release of CO2 was higher in case of liming under elevated temperature -pH increase was observed in case first as well as second liming application; -The concentration of DOC showed continual decrease in all treatments, however it concentration increased after second liming dose;

The aromaticity index in the form of SUVA showed sharp increase in leachates, but thereafter it gradually decreased, especially in case of liming treatment; These ongoing analysis coupled with analysis of soil at the end of experiment using advanced techniques like NMR, GC-MS and PLFA analysis can give idea about chemical controls on soil carbon stabilization under elevated temperature;

References

Hamilton, S. K., A. L. Kurzman, et al. (2007). "Evidence for carbon sequestration by agricultural liming," <u>Global</u> Biogeochem. *Cycles* 21(2): GBO211. . Janssens, I. A., W. Dieleman, et al. (2010). "Reduction of forest soil respiration in response to introgen deposition." <u>Nature Geosei</u> 3(5): 315-322. Schmidt, M. V., M. S. Torn, et al. (2011). "Persistence of soil organic matter as an ecosystem property." Nature *APT/7371*. 43-56. of soil organic ma 478(7367): 49-56