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Improved conceptual model of HZ processes 

HypoTRAIN is dedicated to improve knowledge and understanding of physical, chemical and 

biological processes in the hyporheic zone which contribute to rivers’ self-cleaning capacities. By 

the end of the project the HypoTRAIN team can proudly look back on a number of results and 

publications which sum up to a completed conceptual model of the interacting processes:  

Processes in the hyporheic zone are controlled by five main drivers which vary in time and space 

(Magliozzi et al. 2018): (1) topology, (2.) human activities, (3.) ecology, (4.) hydrology and (5.) 

hydrogeology. To add to this complexity, these drivers are interdependent and can have 

antagonistic or synergistic interactions with each other. The boxes on the diagram in the 

attachment present examples of state-of-the-art improved understanding of key processes 

through collaborative interdisciplinary research carried out as part of HypoTrain. 

1. Driver: Topology – The morphology of the streambed plays a crucial role in driving hyporheic 

exchange. Steeper terrain offers larger potential for increased hyporheic exchange, however this 

will depend on interactions with site-specific hydrological and hydrogeological conditions (b). 

Read more: Betterle et al. 2017; Babak Mojarrad et al. 2017; Mojarrad, Wörman, and Riml 2016 

 2. Driver: Human activities – Anthropogenic activities impact all other drivers. Activities such as 

damming, impact flow regimes and the transfer of nutrients and heat to ecological communities. 

Canalization and landscaping impact topography and hydrological conditions. Groundwater 

extraction (e.g. for drinking water production) can alter regional hydrogeological conditions. In 

addition, release of treated wastewater, recreational activities and urban areas introduce 

micropollutants to lotic systems and make alternative nutrients loads available to microbial 

communities. Read more: Posselt et al. 2018; Jaeger et al. 2017 

3. Driver: Ecology – Responsible for much of the actual transformation of many micropollutants. 

Prevailing environmental conditions such as temperature, dissolved organic carbon content, or 

type and size of the sediment matrix will determine which functional communities will be 

present and their ability/rate to transform micropollutants. Site specific hydrogeological 

conditions will determine residence times of water passing through the hyporheic zone and thus 

impact the efficacy of transformation processes. Read more: Peralta-Maraver, Reiss, and 

Robertson 2018; Njeru, Posselt, and Horn 2017; Peralta-Maraver et al. 2018; Mechelke et al. 

2017 

4. Driver: Hydrology – At reach-scale exchange of surface water to sediments is driven by 

pressure gradients caused by water flowing over streambed structures. Streambed bathymetry, 

and the presence of obstacles such as woody debris can enhance or suppress hyporheic 

exchange.  Together with large scale hydrogeological conditions these factors dictate the 
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quantity of hyporheic exchange and determine residence times of water within the hyporheic 

zone. Read more: Galloway et al. 2017; Popp and Kipfer 2018 

5. Driver: Hydrogeology – Regional hydraulic gradients (h) and the bedrock material dictate 

catchment-scale patterns of hyporheic exchange. Hydrogeological conditions will also determine 

the sediment grain size and streambed roughness and thus interact with ecology and hydrology. 

 

The attachment of this deliverable summarizes the current picture of processes in hyporheic 

zones and indicates where HypoTRAIN contributed knowledge for improved understanding. 
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1. Driver: Topology – The morphology of the 
streambed plays a crucial role in driving hyporheic 
exchange. With steeper terrain offering the potential 
for increased hyporheic exchange. However this will 
depend on interactions with site specific hydrological 
and hydrogeological conditions (b).

Read more: Betterle et al. 2017; Babak Mojarrad et al. 2017; Mojarrad, 
Wörman, and Riml 2016

5. Driver: Hydrogeology – Regional hydraulic gradients (b) and 
the bedrock material dictate catchment-scale patterns of 
hyporheic exchange. Hydrogeological conditions will also 
determine the sediment grain size and streambed roughness 
and thus interact with ecology and hydrology.

Read more: Singh et al. 2018; Wu et al. 2016; Popp and Kipfer 2017

3. Driver: Ecology – Responsible for much of the actual 
transformation (f) of many micropollutants (k). Prevailing 
environmental conditions such as temperature, dissolved 
organic carbon content, type and size of sediment matrix 
will determine which functional communities will be 
present and their ability/rate to transform micropollutants. 
Site specific hydrological conditions will determine 
residence times of water passing through the hyporheic 
zone and thus the impact the efficacy of transformation 
processes.
Read more: Peralta-Maraver, Reiss, and Robertson 2018; Njeru, Posselt, and 

Horn 2017; Peralta-Maraver et al. 2018

4. Driver: Hydrology – At reach-scale exchange of surface 
water (j) to sediments is driven by pressure gradients caused 
by water flowing over streambed structures. Streambed 
bathymetry, the presence of obstacles such as woody debris 
(a) can enhance or suppress hyporheic exchange (i) and 
together with large scale hydrogeological will dictate the 
quantity of hyporheic exchange and determine residence 
time of water within the hyporheic zone.

Read more: Galloway et al. 2017; Popp and Kipfer 2018

2. Driver: Anthropology – Anthropogenic 
activities impact all other drivers. Activities 
such damming (c) impact flow regime and 
the transfer of nutrients and heat to 
ecological communities (f). Canalisation and 
landscaping impacts topography and 
hydrological conditions (b) and groundwater 
extracting can alter regional hydrogeological 
conditions. In addition, release of treated 
wastewater (d), recreational activies (g) and 
urban areas (e) introduces micropollutants to 
lotic systems and alternative nutrients loads 
available to microbial communities.

Read more: Posselt et al. 2018; Jaeger et al. 2017; 

Mechelke et al. 2018

Conceptual diagram of Hyporheic Zone Processes
There are five main drivers which vary in time and space (Magliozzi et al. 
2018): topology (1.), anthropology (2.), ecology (3.), hydrology (4.) and 
hydrogeology (5.). To add to this complexity, these drivers are 
interdependent and can have antagonistic or synergistic interactions with 
each other. The boxes on this diagram present examples of state-of-the-art 
improved understanding of key processes through collaborative 
interdisciplinary research carried out as part of HypoTrain.

This project was funded by the European Union’s Horizon2020 research and innovation programme under Marie–Skłodowska–Curie grant agreement No. 641939. 
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