Runoff Generation, Residence Times & Dynamics of Surface/Sub-Surface Exchange in a Wetland with Micro-topography - a Modeling Study.

S. Frei1, S. Peiffer1, K.H. Knorr1, G. Lischeid2, J.H. Fleckenstein1

¹Department of Hydrology, University of Bayreuth, Germany, contact: svenfrei@uni-bayreuth.de ²Leibnitz Centre for Agricultural Landscape Research (ZALF), Germany

FH-DGG Tagung 2010, Tübingen

Background

In mountainous catchments wetlands often make up large fractions of the total catchment area with potential implications for runoff generation and nutrient export. Wetland surfaces are often characterized by a distinct micro-topography (hollows and hummocks). The effects of such micro-topography on surface-subsurface exchange, runoff generation and sub-surface residence times for a 10 by 20 m synthetic section of a riparian wetland are investigated in this modeling study. The structure of the micro-topography replicates that of a riparian wetland in a small mountainous catchment in South-East Germany (Lehstenbach) and is created using geostatistical simulation. Flow is modeled with the fully integrated surface-subsurface code HydroGeoSphere, Simulation results show that the specific structure of the wetland surface results in distinct shifts between surface and subsurface flow dominance. The micro-topography efficiently buffers rainfall inputs and produces a hydrograph that is characterized by subsurface drainage during most of the year and only temporally shifts to surface flow dominance during intense rainstorms. Microtopography induces a very heterogeneous sub-surface hydrology where a shallow and a deep flow system coexist resulting in a very complex sub-surface residence time distribution. Preliminary results show that the complex sub-surface flow field, with its broad range of different sub-surface flow paths, leads to biogeochemical patchiness.

Lehstenbach watershed

Objectives

- what effect does micro-topography in riparian wetlands have on stream discharge generation
- effects of micro-topography on residence time distribution & biogeochmistry

Methods

Numerical surface/subsurface flow simulation

- Richard's equation for subsurface flow
- diffusion-wave approximation for surface flow
- fully integrated and coupled
- homogeneous, isotropic peat body

Results

Flow component separation & runoff dynamics

Complex sub-surface flow patterns & residence times (RT)

shallow, surface near flow system ---- shorter sub-surface RT

deep flow system ---- longer sub-surface RT

Spatial RT - distribution & RT histogram

Outlook

Coupling hydrology to bio-geochemical model (PHREEQC 9)

urface ponding

(day 217)

intensive surface flow

(day 218)